Named Entity Recognition using Cross-lingual Resources: Arabic as an Example
نویسنده
چکیده
Some languages lack large knowledge bases and good discriminative features for Name Entity Recognition (NER) that can generalize to previously unseen named entities. One such language is Arabic, which: a) lacks a capitalization feature; and b) has relatively small knowledge bases, such as Wikipedia. In this work we address both problems by incorporating cross-lingual features and knowledge bases from English using cross-lingual links. We show that such features have a dramatic positive effect on recall. We show the effectiveness of cross-lingual features and resources on a standard dataset as well as on two new test sets that cover both news and microblogs. On the standard dataset, we achieved a 4.1% relative improvement in Fmeasure over the best reported result in the literature. The features led to improvements of 17.1% and 20.5% on the new news and microblogs test sets respectively.
منابع مشابه
تشخیص اسامی اشخاص با استفاده از تزریق کلمههای نامزد اسم در میدانهای تصادفی شرطی برای زبان عربی
Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...
متن کاملImproved Named Entity Recognition using Machine Translation-based Cross-lingual Information
In this paper, we describe a technique to improve named entity recognition in a resource-poor language (Hindi) by using cross-lingual information. We use an on-line machine translation system and a separate word alignment phase to find the projection of each Hindi word into the translated English sentence. We estimate the cross-lingual features using an English named entity recognizer and the a...
متن کاملIllinois Cross-Lingual Wikifier: Grounding Entities in Many Languages to the English Wikipedia
We release a cross-lingual wikification system for all languages in Wikipedia. Given a piece of text in any supported language, the system identifies names of people, locations, organizations, and grounds these names to the corresponding English Wikipedia entries. The system is based on two components: a cross-lingual named entity recognition (NER) model and a crosslingual mention grounding mod...
متن کاملCross-lingual Transfer of Named Entity Recognizers without Parallel Corpora
We propose an approach to cross-lingual named entity recognition model transfer without the use of parallel corpora. In addition to global de-lexicalized features, we introduce multilingual gazetteers that are generated using graph propagation, and cross-lingual word representation mappings without the use of parallel data. We target the e-commerce domain, which is challenging due to its unstru...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کامل